Approximations - shahzade baujiti

Breaking

Monday, May 13, 2019

Approximations

Rounding off Whole Numbers to Given Place Values
Round off whole numbers to given place values
STEPS
  • When rounding a number, stand at the digit of the required place value, then look at the next digit to the right; if it is or more, round up (i.e, increase the digit of the required place value by 1) and if it is or less, do not change the digit of the required place value
  • Replace all the remaining digits to the right of the required place value with the zeros
Example
Round off whole numbers to given place values
  1. million
  2. ten million
Solution
  1. The million digit is 2, since the next digit to the right is greater than 5, then we can increase 2 by 1 and put the remaining digits to the right of 2 zeros. There fore;42,850,671 ≈ 43,000,000
  2. The ten million digit is 4, since the next digit to the right is less than 5, then we do not change 4 but we put the remaining digits to the right of 4 zeros. There fore;42,850,671 ≈ 40,000,000
Example
Round off whole numbers to given place values
Solution:
6 is in the thousands place. The number to the right of 6 is 1. Then 426143 is 426000 rounded off to thousands.
Decimals to a Given Number of Decimal Place
Round off decimals to a given number of decimal place
STEPS
  • When rounding a decimal, stand at the digit of the required decimal place, then look at the next digit to the right; if it is or more, round up (i.e increase the digit of the required decimal by 1) and if it is or less, do not change the digit of the required decimal place
  • Replace all the remaining digits to the right of the required decimal place with the zeros
NOTE
  • The first digit after the decimal point is the first decimal place, the second digit after the decimal point is the second decimal place e.t.c
  • Example 0.568 is the first decimal place and is the second decimal place
Example
Round off decimals to a given number of decimal place
  1. 1 decimal place
  2. 2 decimal places
  3. 3 decimal places
Solution:
  1. 0.24736≈ 0.2 (1 d.p)
  2. 0.24736≈ 0.25 (2 d.p)
  3. 0.24736≈ 0.247 (3 d.p)
Example
Round off decimals to a given number of decimal place
Solution: 58 x 61 ≈ 60 x 60 =3600
Significant Figures
Significant figures of a number - are the significant digits, counted from left of the number.The first significant figure must be non-zero; following significant figures may take any value.
A Number to a Given Number of Significant Figures
Write a number to a given number of significant figures
Is the number of significant digits including 0 if it is between the first and the last
Examples
  1. 13 – has two significant figures
  2. 709.43 – has five significant figures
  3. 0.0004001 – has four significant figures
STEPS
  • When rounding a number to a certain significant figure, stand at the digit of the required significant figure, then look at the next digit to the right; if it is or more, round up (i.e increase the digit of the required significant figure by 1) and if it is or less, do not change the digit of the required significant figure
  • Replace all the remaining digits to the right of the required significant figure with the zeros
Example
Write a number to a given number of significant figures
  1. 1 first significant figure
  2. 2 significant figure
  3. 3 significant figure
Solution
  1. 50
  2. 45
  3. 45.3
Example
Write a number to a given number of significant figures
  1. 2 first significant figure
  2. 4 significant figure
  3. 3 significant figure
Solution
  1. 150 000
  2. 146 400
  3. 146 000
Approximations in Calculations
The Knowledge of Rounding Off of Numbers in Computations Involving Large Numbers and Small Numbers
Use the knowledge of rounding off of numbers in computations involving large numbers and small numbers
Approximation can be used in operation to check whether a calculation is correct or not, i.e in addition, subtraction, multiplication and divisione.g 446 x 45 = 20 070
The above calculation can be checked quickly whether it is correct or not by rounding each number to 1 significant figure and then multiply i.e 400 x 50 = 20 000
Therefore, the approximation of 20 000 is close to 20 0070 is correct.Before carrying an operation, each number in a calculation is rounded to 1 significant figure
Example
Use the knowledge of rounding off of numbers in computations involving large numbers and small numbers
Example
Use the knowledge of rounding off of numbers in computations involving large numbers and small numbers
Solution
32 × 580 ≈30×600 = 18 000
The approximate transport cost was 18 000/-
Example
Use the knowledge of rounding off of numbers in computations involving large numbers and small numbers
Solution: 10.12 x 0.08 = 0.8096 has 4 decimal places

No comments:

Post a Comment